# SHIMADZU

# A Combined MRM and SIM Method for Direct Quantitative Determination of Amino Acids in Various Samples on LC/MS/MS

Zhe Sun<sup>1</sup>, Jie Xing<sup>1</sup>, Pei Yee Khoo<sup>2\*</sup> and Zhaoqi Zhan<sup>1</sup> <sup>1</sup>Application Development & Support Centre, Shimadzu (Asia Pacific) Pte Ltd, 79 Science Park Drive, Singapore; <sup>2</sup>School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore; \*Student

# **1. Introduction**

3.1 Establishment of a combined MRM-SIM method for 20 amino acids Quantitative analysis of amino acids in biological samples, food and nutrition products are often required in various fields from research to manufacturing [1]. Recently, Imtakt With the Intrada column, both MRM method and SIM method were applied for analysis of introduced a new Intrada Amino Acid column, which is composed of a mixed stationary amino acids on LC/MS/MS and LC/MS independently [1,2]. Figure 1 shows typical MRM phase of ion exchange and normal phase, for direct separation and detection of amino chromatograms of a mixed standard of 20 amino acids on LCMS-8040 following the Imtakt acids on LC-MS without the need for pre- or post-column derivatization [2]. This new method [1]. However, it was observed that glycine (m/z76) exhibited very low peak method not only simplifies the analysis of amino acids drastically, but also reduces the intensity in MRM mode (76 > 30). As a result, the detection sensitivity remained poor. In running cost and enhances the applicability for various kinds of samples. We describe the this work, a combined MRM-SIM mode method was adopted instead of only MRM. The applications of the Intrada Amino Acid column with using a combined MRM-SIM mode for SIM data was acquired by the Q3 (Q1-q2-Q3) simultaneously with MRM data in the same direct analysis of 20 amino acids in a variety of samples on LC/MS/MS. The samples analysis on LCMS-8040. include from human plasma, serum, urines to wines, beers, vinegar, sports water & amino acid drink. The aim of using a combined SIM and MRM method is to increase the detection Several pairs of MRM and SIM peaks of amino acids are displayed in Figure 3. It can be sensitivity of certain amino acids which have low sensitivities in MRM mode, mainly seen that, the MRM peak of glycine was very small at 50 nmol/mL and disappeared below Glycine and a few other amino acids.

# 2. Experimental

Twenty amino acid standards in powders were obtained from Sigma Aldrich. They were dissolved in 0.1N HCl solution to obtain individual stock solutions, except for cystine and glutamine, which were dissolved in 1.0N HCl solution. A mixed standard was prepared from the stocks and was diluted using pure water serially to various concentrations as calibrants. Two categories of samples, i.e., biological and beverage samples were collected and analyzed. The sample was de-proteinized by adding MeOH/ACN (1:1) solvent in a ratio of 1:3 or 1:4, followed by vortex and centrifugation at 13,000rpm for 10 mins. The supernatant was transferred and filtered before LC/MS/MS analysis. An LCMS-8040 triple quadrupole coupled with an UFLC system (Shimadzu Corporation) was employed in this work. The detailed conditions are compiled in Table 1.

| Column         | Intrada Amino Acid (100 x3 mm, 3µm)                                                                                         | Interface           | ESI                       |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|--|
| Flow rate      | 0.6 mL/min                                                                                                                  | MS mode             | Posi, MRM-SIM             |  |
| Mobile phase   | A: ACN/THF / 25mM ammonium formate /FA =<br>9 / 75 /16 / 0.3 (v)                                                            | Block temp.         | 400°C                     |  |
|                | B: ACN / 100mM ammonium formate = 20 / 80                                                                                   | DL temp.            | 300°C                     |  |
| Elution mode   | Gradient elution, 0-3min (0% B) $\rightarrow$ 9min (17% B) $\rightarrow$ 16-<br>18min (100% B) $\rightarrow$ 18 5min (0% B) | CID gas             | Ar (230kPa)               |  |
|                | 35°C                                                                                                                        | Nebulizing gas flow | N <sub>2</sub> , 3 L/min  |  |
| Injection vol. | 2.0 µL                                                                                                                      | Drying gas flow     | N <sub>2</sub> , 15 L/min |  |

Table 1: Analytical conditions of twenty amino acids on LCMS-8040: HPLC (left) and MS/MS (right)



7.5 10.0 12.5 15.0 17.5 Figure 1: MRM and SIM chromatograms of 20 amino acids mixed standard (50 nmol/mL, 1uL inj).



Figure 2: Representative MRM & SIM calibration curves of eight levels at 0.05-100 nmol/mL



the concentration. While the SIM peak of glycine exhibits high intensity at the same concentration and could be detected at 5 nmon/mL in clear solution. Thus, quantitation of glycine could be relied on SIM mode for lower concentration levels. In addition, a few more amino acids, namely, Thr, Asp, Ala, Ser, and Cys, exhibit higher SIM mode intensity and detection sensitivity than MRM mode in clear solutions (Figure 3). Based on these results,

## 3. Results and Discussion



Figure 3: Individual chromatograms of selected amino acids (50 nmol/mL, 1uL ini), comparing MRM (top) and SIM (bottom) modes.

| hla 2. Cummar  | v of collibration linearit | VIOO and rangetability  |                               | 1 augustification mathed |
|----------------|----------------------------|-------------------------|-------------------------------|--------------------------|
| idle Z. Summar | v or calibration linearit  | V LOQ and repeatability | V (%ROD) UI LITE OIIVI-IVIRIN | /i quantification method |
|                |                            | $j_{j} = 0$             |                               |                          |

| No  | Name          | RT (min) | MRM Method (nmo//mL) |         |                |     | SIM Method (nmol/mL) |          |                |     |
|-----|---------------|----------|----------------------|---------|----------------|-----|----------------------|----------|----------------|-----|
| INU |               |          | m/z                  | Range   | R <sup>2</sup> | LOQ | m/z                  | Range    | R <sup>2</sup> | LOQ |
| 1   | Tryptophan    | 3.42     | 205.1>188.2          | 0.1-100 | 0.996          | 0.1 | 205.1                | 0.1-100  | 0.997          | 0.1 |
| 2   | Phenylalanine | 3.74     | 166.1>120.1          | 0.1-100 | 0.998          | 0.1 | 166.1                | 0.1-100  | 0.997          | 0.1 |
| 3   | Tyrosine      | 4.06     | 182.1>136.2          | 0.5-100 | 0.998          | 0.5 | 182.1                | 0.5-100  | 0.999          | 0.5 |
| 4   | Leucine       | 4.69     | 132.1>86.3           | 0.1-100 | 0.999          | 0.1 | 150.1                | 0.5-100  | 0.997          | 0.5 |
| 5   | Methionine    | 4.91     | 150.1>56.1           | 0.5-100 | 0.999          | 0.5 | 132.1                | 0.1-100  | 0.998          | 0.1 |
| 6   | Isoleucine    | 5.1      | 132.1>86.3           | 0.1-100 | 0.999          | 0.1 | 132.1                | 0.5-100  | 0.998          | 0.5 |
| 7   | Valine        | 6.09     | 118.2>72.1           | 0.5-100 | 0.998          | 0.5 | 118.2                | 0.5-100  | 0.998          | 0.5 |
| 8   | Glutamic Acid | 7.06     | 148.1>84.1           | 0.5-100 | 1.000          | 0.5 | 148.1                | 0.5-100  | 0.998          | 0.5 |
| 9   | Proline       | 7.29     | 116.1>70.1           | 0.1-100 | 0.999          | 0.1 | 116.1                | 0.1-100  | 0.999          | 0.1 |
| 10  | Threonine     | 7.68     | 120.1>74.0           | 1.0-100 | 1.000          | 1   | 120.1                | 0.5-100  | 0.996          | 0.5 |
| 11  | Aspartic acid | 8.05     | 134.1>73.9           | 5.0-100 | 0.996          | 5   | 134.1                | 1.0-100  | 0.997          | 1.0 |
| 12  | Alanine       | 8.25     | 90.1>44.1            | 5.0-100 | 0.994          | 5   | 90.1                 | 0.5-100  | 0.993          | 0.5 |
| 13  | Serine        | 8.94     | 106.1>60.2           | 5.0-100 | 0.999          | 5   | 106.1                | 1.0 -100 | 0.997          | 1.0 |
| 14  | Glutamine     | 9.13     | 147.1>84.1           | 0.5-100 | 0.992          | 0.5 | 147.1                | 10-100   | 0.907          | 10  |
| 15  | Glycine       | 9.38     | 76.0>30.0            | 25-100  | 0.993          | 25  | 76                   | 5-100    | 0.993          | 5   |
| 16  | Asparagine    | 9.56     | 133.1>74.1           | 5.0-100 | 0.999          | 5   | 133.1                | 5-100    | 0.998          | 5   |
| 17  | Cystine       | 12.31    | 241.0>151.9          | 1-100   | 0.999          | 1   | 241                  | 1-100    | 0.996          | 1   |
| 18  | Histidine     | 16.57    | 156.1>110.1          | 0.5-100 | 0.992          | 0.5 | 156.1                | 0.5-100  | 0.991          | 0.5 |
| 19  | Lysine        | 17.15    | 147.0>84.1           | 0.1-100 | 0.999          | 0.1 | 147                  | 5-100    | 0.999          | 5   |
| 20  | Arginine      | 18.1     | 175.1>70.1           | 0.5-100 | 0.999          | 0.5 | 175.1                | 0.1-100  | 0.998          | 0.5 |

a combined MRM-SIM method was established for quantitation of amino acids rather than only MRM method. The details of the MRM-SIM method established are summarized in Table 2. The accuracy and repeatability of the methods (not shown in the table) were evaluated and satisfied results were obtained. A few selected calibration curves are displayed in Figure 2.

### 3.2 Analysis of amino acid in biological and beverage samples

One of the purposes of this study is to evaluate the robustness of the method for different samples (biological and beverage samples). Without additional clean-up except deproteinization and filtering, the liquid sample was injected to LCMS-8040. The results of six representative samples are compiled into Table 3 and the chromatograms of four samples are shown in Figure 4. From the analyses of 20 different samples (3 plasma, 1 serum, 7 urine, 9 beverage samples), we could summarize the results and the method robustness in a few key points. First, the quantitative results by MRM and SIM calibrations are well in agreement with each other. Second, glycine could be detected and quantified only by SIM method in all the samples. Third, two amino acids could not be detected by MRM, but were detected by SIM mode (Asp in urine, Cys in vinegar).



Furthermore, the amino acid profiles in different samples are outlined below. (a) In human plasma and serum, the contents of Glu and Ala are the highest, and Met is the lowest. (b) Amino acid contents in urine are varied greatly across the 7 individuals. But Gln and Pro are detected consistently as the highest and lowest, respectively. (c) Most amino acids are found in high contents except Typ and Cys in all three types of wines (red, white and Chinese rice wine). (d) In beer samples, Pro is in highest content and Cys is the lowest. (e) The Sports Water and Amino Acid Drink bought from supermarket are with labeled contents of amino acids in the product bottles. The quantitative results of amino acids are closed to the contents on labels. The Sports Water contains Leu, lle and Val. The Amino Acid Drink contains Try, Val, Leu, Ile, Thr and Lys.



| ID#             | Name          | m/z         | Bi<br>C      | ological Sample<br>conc. (nmol/mL) |        | Beverage Sample<br>Conc.(nmol/mL) |          |         |
|-----------------|---------------|-------------|--------------|------------------------------------|--------|-----------------------------------|----------|---------|
|                 |               |             | Human Plasma | Human Serum                        | Urine  | Red Wine                          | Beer     | Vinegar |
| 1 Tryptophan    | 205.1         | 141.5       | 34.8         | 109.9                              | 3.0    | 111.1                             | ND       |         |
|                 | Tryptophan    | 205.1>188.2 | 134.8        | 31.5                               | 100.5  | 2.5                               | 87.7     | ND      |
| 2 Phenylalanine | 166.1         | 122.1       | 90.7         | 110.6                              | 87.7   | 173.8                             | 1010.0   |         |
|                 | Phenylalanine | 166.1>120.1 | 122.2        | 89.6                               | 93.5   | 79.0                              | 159.6    | 766.1   |
| 3 Tyrosin       | Turosino      | 182.1       | 117.6        | 93.9                               | 91.8   | 92.4                              | 135.5    | 47.9    |
|                 | Tyrosine      | 182.1>136.2 | 113.8        | 85.9                               | 116.4  | 57.9                              | 110.7    | 31.1    |
| 1               |               | 132.1       | 285.9        | 466.4                              | 57.8   | 180.8                             | 59.4     | 2988.2  |
| 4               | Leucine       | 132.1>86.3  | 274.6        | 445.4                              | 53.4   | 176.2                             | 57.2     | 3248.1  |
| F               | Mathianina    | 150.1       | 3.6          | 0.9                                | 111.1  | 33.7                              | 7.2      | 90.6    |
| 5               | wethionine    | 150.1>56.1  | 2.5          | 0.7                                | 112.6  | 35.1                              | 6.7      | 83.1    |
| 6               | Icoloucino    | 132.1       | 163.6        | 101.5                              | 19.2   | 60.1                              | 48.1     | 2357.2  |
| 0               | Isoleucine    | 132.1>86.3  | 151.2        | 85.7                               | 17.3   | 56.0                              | 43.1     | 2010.5  |
| 7               | Valina        | 118.2       | 360.0        | 375.9                              | 67.3   | 110.6                             | 255.7    | 3627.7  |
| 1               | Valine        | 118.2>72.1  | 383.3        | 323.2                              | 66.4   | 99.2                              | 240.5    | 2783.3  |
| o               |               | 148.1       | 1353.3       | 907.4                              | 27.4   | 162.1                             | 60.0     | 1942.5  |
| 0               | Giutamic Aciu | 148.1>84.1  | 1358.1       | 904.5                              | 18.6   | 167.5                             | 56.5     | 1735.6  |
| 0               | Drolino       | 116.1       | 496.1        | 421.7                              | 6.1    | 14724                             | 3546.9   | 2851.6  |
| 9               | FIOIIIIe      | 116.1>70.1  | 495.7        | 418.8                              | 6.9    | 19555                             | 2699.9   | 3555.1  |
| 10              | Throoping     | 120.1       | 403.1        | 437.1                              | 769.5  | 224.0                             | (235.0)* | 2960.4  |
| 10              | THEOTINE      | 120.1>74.0  | 303.0        | 375.7                              | 549.2  | 183.8                             | 5.7      | 1655.5  |
| 11              | Accortio acid | 134.1       | 85.9         | 285.2                              | 109.2  | 247.2                             | 53.0     | 478.7   |
| 11              | Aspartic aciu | 134.1>73.9  | 65.6         | 288.6                              | ND     | 296.8                             | 42.0     | 116.3   |
| 10              | Alonino       | 90.1        | 937.5        | 1003.2                             | 1184.1 | 997.9                             | 1129.2   | 13420.1 |
| 12              | Alanine       | 90.1>44.1   | 1053.1       | 1540.6                             | 946.8  | 689.5                             | 874.0    | 9828.1  |
| 10              | Sorino        | 106.1       | 350.0        | 574.1                              | 1086.0 | 156.4                             | 17.5     | 3205.1  |
| 15              | Senne         | 106.1>60.2  | 344.8        | 631.0                              | 1023.8 | 160.3                             | 15.1     | 2721.7  |
| 1 /             | Glutamine     | 147.1       | 195.6        | 155.7                              | 3007.5 | (56.5)*                           | 210.1    | 10.3    |
| 14              |               | 147.1>84.1  | 254.0        | 282.8                              | 3598.2 | 1.8                               | 116.7    | 12.1    |
| 15              | Glycine       | 76          | 642.6        | 493.5                              | 1515.2 | 488.6                             | 366.3    | 5215.5  |
|                 |               | 76.0>30.1   | ND           | ND                                 | ND     | ND                                | ND       | ND      |
| 16              | Asparagine    | 133.1       | 34.7         | 24.1                               | 250.7  | 76.5                              | 37.6     | 561.3   |
|                 |               | 133.1>74.1  | 27.5         | 18.6                               | 188.5  | 79.1                              | 16.7     | 456.7   |
| 17              | Cystine       | 241         | 18.9         | 7.4                                | 73.8   | ND                                | ND       | 7.9     |
|                 |               | 241.0>152.0 | 20.8         | 6.5                                | 72.4   | ND                                | ND       | ND      |
| 18              | Histidine     | 156.1       | 238.4        | 45.1                               | 2547.4 | 67.1                              | 117.0    | 67.2    |
|                 |               | 156.1>110.1 | 246.3        | 49.6                               | 2645.5 | 49.9                              | 126.3    | 58.7    |
| 10              | Lysing        | 147         | 551.6        | 312.6                              | 709.3  | 101.2                             | 4.9      | 2135.3  |
| 10              | Lyonic        | 147.0>84.1  | 584.2        | 309.3                              | 797.6  | 147.3                             | 7.7      | 3374.8  |
| 20              | Arginine      | 175.1       | 923.3        | 171.2                              | 86.3   | 152.9                             | 197.4    | 1260.9  |
| 20              |               | 175.1>70.1  | 924.0        | 170.4                              | 85.2   | 161.3                             | 194.0    | 1339.8  |

Note: ND = Not Detected; \* The SIM peak has co-eluted component and the result is not accurate.

## 4. Conclusions

By using the Intrada Amino Acid column, a combined MRM-SIM method has been established for detection and quantification of 20 amino acids in biological and beverage samples. The Intrada Amino Acid column can separate effectively the amino acids without need of pre-column derivatization, which allow direct analysis of amino acids on LC-MS. The advantages of a combined MRM-SIM method on LC/MS/MS are the higher sensitivity for glycine in SIM mode and overall enhanced reliability, robustness and accuracy in comparison with the only MRM method or SIM method.

### References

- Yazwa Itaru, Tachikawa Hiroshi, "Development of a novel amino acids analysis column for LC-MS without derivatization", Imtakt Corporation (2014)
- 2. Matsumoto K., Watanabe J., Yazawa I., "Simultaneous quantitative analysis of 20 amino acids in food samples without derivatization using LC-MS/MS", ASMS 2014, TP 510

Disclaimer: Shimadzu LCMS-8040, UFLC XR system and Labsolutions Insight are intended for Research Use Only (RUO). Not for use in diagnostic procedures.

TP740



### Table 3: Amino Acid profiles in biological and beverage samples determined by MRM-SIM method on LCMS-8040